891. Electric Dipole Moments of Substituted Pyridines, Pyridine 1-Oxides, and Nitrobenzenes.

By A. N. Sharpe and S. Walker.

Twenty-seven dipole moments have been measured of alkyl, phenyl, and halogenated derivatives of the nitrobenzene, pyridine, and pyridine 1 -oxide systems in benzene solution at $25^{\circ} \pm 0.01^{\circ}$. The dipole moments of the pyridine 1 -oxides are very dependent on atmospheric humidity; consistent results can only be obtained when moisture is rigorously excluded. The electron-accepting power of the ring is compared for the three ring systems and for benzene. Correlations have been made from certain physical data for these molecules with Hammett substituent constants and mesomeric moments. The importance of hyperconjugation in determining the dipole moment in such systems is considered.

Chemical and dipole-moment evidence ${ }^{1-3}$ has shown that the $\mathrm{N}-\mathrm{O}$ group in pyridine 1 -oxide is considerably stabilised by resonance with the ring. X-Ray-diffraction work ${ }^{4}$ has shown that the $\mathrm{N}-\mathrm{O}$ bond in 4 -nitropyridine 1 -oxide has about 25% double-bond character, and the $\mathrm{C}-\mathrm{C}$ bonds parallel to the longitudinal axis of the molecule about 90% double-bond character. In this particular molecule, therefore, the quinonoid structure is relatively important. Further, dipole-moment studies ${ }^{3}$ showed that the mesomeric moment of pyridine l-oxide is larger for both electron-withdrawing and electron-releasing substituents than in the pyridine or benzene series.

The possible modes of interaction of the polar group with the ring in nitrobenzene, pyridine, and pyridine 1 -oxide present interesting comparisons, and it was felt that a study of ring-substituent interaction in these systems would be informative. In addition, a study of the dipole moments of homologous series of the alkyl derivatives of these systems and of benzene offered a means of investigating hyperconjugation in the different types of conjugated molecules.

Experimental

Apparatus and Techniques.-The heterodyne-beat apparatus and the method of measurement have been previously described. ${ }^{5}$ Seven solutions were generally made up; the dielectric constant and specific volume of pure benzene were assumed to be $2 \cdot 2725$ and $1 \cdot 14445$ respectively. Deviations between these values and the extrapolated values from the graphs never exceeded ± 0.0005 and ± 0.00002, respectively. Calculation of dipole moments has also been described and the results are considered to be accurate to within $\pm 0.01 \mathrm{D}$, unless otherwise stated.

Solutions of deliquescent pyridine 1-oxides were prepared in a glove box. Reproducible results were obtained only when a vigorous stream of dry nitrogen was passed for at least 0.5 hr . before exposure of the compound. Pure benzene was added from a separatory funnel which had a ground-glass joint fitting the bottle neck, a sintered-glass filter plug, and a soda-lime tube to admit air. Solutions were transferred to and from the dielectric constant cell under pressure of dry air, and the temperature of the bath was controlled within $\pm 0.01^{\circ}$.

Preparation and Purification of Materials.-The purification of benzene has been described previously. ${ }^{5}$

The following compounds were prepared by known methods and purified by crystallisation or fractionation in a column of high efficiency and low hold-up. Values of m. p. or b. p. from the literature are given in parentheses: pyridine l-oxide (from benzene or ether), m. p. 66 - 67°

[^0]$\left(67^{\circ}{ }^{6}\right)$; 4-methylpyridine l-oxide (from benzene), m. p. $183^{\circ}\left(185-186^{\circ},{ }^{7} 181^{\circ}{ }^{8}\right.$), unchanged by further recrystallisation; 3 -methylpyridine 1 -oxide, m. p. 30°; 4-chloropyridine 1 -oxide, (from acetone) m. p. 158° (decomp.), (from benzene), 149° (decomp.) ($169 \cdot 5^{\circ}, 152 \cdot 5-153 \cdot 5^{\circ},{ }^{9}$ $179 \cdot 5-180^{\circ}{ }^{10}$); 4-bromopyridine l-oxide (from acetone), m. p. 147° (decomp.), (from benzene), 142° (decomp.) [$142-143^{\circ},^{9} 163^{\circ}$ (decomp.) ${ }^{1}$]; 3-chloropyridine 1 -oxide b. p. $118-119^{\circ} / 1.05$ $\mathrm{mm} ., \mathrm{m}$. p. 54° (picrate, m. p. 141°); 3-bromopyridine l-oxide, b. p. $124-126^{\circ} / 0 \cdot 75 \mathrm{~mm}$. ($143-148^{\circ} / 4 \mathrm{~mm} .{ }^{11}$), m. p. $43-44^{\circ}$; 3-iodopyridine l-oxide (from benzene), m. p. 131° (picratc m. p. 145°) ; 4-bromopyridine, ${ }^{12}$ distilled at -20° and evacuated at room temp.; 4-phenylpyridinc l-oxide ${ }^{13}$ (from benzene), m. p. 151° ($152-152 \cdot 5^{\circ}{ }^{13}$); 3-chloropyridine, b. p.

Table 1.

$$
v_{12}=1.144466
$$

$$
v_{12}=1 \cdot 14446-0.2336 w_{2} ;
$$

$$
n_{12}{ }^{2}=2 \cdot 24335+0 \cdot 2170 w_{2} ;{ }_{2} P_{\infty}=467.80 \text { c.c. }
$$

$$
R_{\mathrm{D}}=42.29 \text { с.c. } ; \mu=4.56 \mathrm{D} .
$$

* A sample of this compound made into solutions in partially dried air had $\mu=4.73 \mathrm{D}$.

3-Methylpyridine 1-oxide *			
4110	$2 \cdot 3498$	1-14323	2.24355
4863	$2 \cdot 3633$	1-14304	$2 \cdot 24418$
6716	$2 \cdot 4013$	$1 \cdot 14244$	$2 \cdot 24463$
13,787	$2 \cdot 5346$	$1 \cdot 14033$	$2 \cdot 24533$
21,071	$2 \cdot 6695$	1-13822	$2 \cdot 24757$
29,686	$2 \cdot 8363$	1-13565	$2 \cdot 25024$
50,824	3-2369	1-12945	2.25552
$v_{12}=1.14444-0.2954 w_{2}$;			
$n_{12}{ }^{2}=2$.	+0.26 +32.64	${ }_{2}{ }_{2} P_{\infty}=4$.	c.

* The weight fractions are unusually high for this investigation as a result of the deceptive appearance of the solid (additions to bottles in the glove-box cannot be weighed). The concentrations are within the limits used by many authors, and the linearity was excellent.

[^1]Table 1. (Continued.)

$10^{6} w_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
	4 -Methylpyridine 1 -oxide		
785	2.2882	$1 \cdot 14417$	$2 \cdot 24421$
1479	2.3033	$1 \cdot 14394$	$2 \cdot 24445$
1823	2.3101	$1 \cdot 14381$	$2 \cdot 24451$
2727	$2 \cdot 3292$	$1 \cdot 14357$	2.24495
2875	2.3317	$1 \cdot 14352$	2.24505
3242	2.3388	$1 \cdot 14340$	2.24517
4491	2.3644	1.14303	$2 \cdot 24565$

$\varepsilon_{12}=2 \cdot 2725+20.560 w_{2} ;$
$v_{12}=1.14442-0.3163 w_{2}$;
$n_{12}{ }^{2}=2.24178+0.5863 w_{2} ;{ }_{2} P_{\infty}=492.52$ с.с.;
$R_{\mathrm{D}}=57.27$ с.с. $; \mu=4.61 \mathrm{D}$.

4-Chloropyridine 1-oxide			
1680	$2 \cdot 2844$	1-14373	$2 \cdot 24290$
2107	$2 \cdot 2875$	1-14348	$2 \cdot 24314$
3580	$2 \cdot 2975$	$1 \cdot 14289$	$2 \cdot 24352$
3945	$2 \cdot 3003$	1-14273	$2 \cdot 24382$
5589	$2 \cdot 3116$	$1 \cdot 14195$	$2 \cdot 24415$
5977	$2 \cdot 3149$	1-14180	$2 \cdot 24433$
6471	$2 \cdot 3178$	1•14159	$2 \cdot 24463$

$\varepsilon_{12}=2.2725+7.034 w_{2} ;$
$v_{12}=1.14445-0.4442 w_{2}$;
$n_{12}{ }^{2}=2.24239+0.3279 w_{2} ;{ }_{2} P_{\infty}=198.42$ c.c.;
$R_{\mathrm{D}}=34.68$ с.с.; $\mu=2.83$ D (ref. $3,2.82$).

3-Chloropyridine 1-oxide			
2141	$2 \cdot 2976$	$1 \cdot 14350$	$2 \cdot 24397$
2932	$2 \cdot 3073$	$1 \cdot 14311$	$2 \cdot 24424$
4853	$2 \cdot 3295$	1-14228	$2 \cdot 24502$
4938	$2 \cdot 3309$	1-14221	$2 \cdot 24505$
7003	$2 \cdot 3545$	1-14131	$2 \cdot 24577$
8262	$2 \cdot 3688$	1-14073	$2 \cdot 24619$
10,575	$2 \cdot 3957$	1-13971	$2 \cdot 24691$
$\begin{gathered} n_{12}{ }^{2}=2.24325+0.3538 w_{2} ;{ }_{2} P_{\infty}=311.81 \text { c.c. } ; \\ R_{\mathrm{D}}=35.12 \text { c.c. } ; \mu=3.68 \mathrm{D} . \end{gathered}$			
3-Iodopyridine 1-oxide			
1725	$2 \cdot 2854$	$1 \cdot 14321$	$2 \cdot 24337$
1938	$2 \cdot 2868$	1-14310	2.24334
2039	$2 \cdot 2872$	$1 \cdot 14307$	2.24334
5789	$2 \cdot 3159$	$1 \cdot 14034$	$2 \cdot 24460$
7373	$2 \cdot 3267$	$1 \cdot 13930$	$2 \cdot 24475$
8859	$2 \cdot 3373$	1-13829	$2 \cdot 24523$
15,259	$2 \cdot 3856$	1-13376	$2 \cdot 24718$

Table 1. (Continued).

$10^{6} w_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
4-Phenylpyridine			
1008	$2 \cdot 2772$	1-14427	$2 \cdot 24227$
1617	$2 \cdot 2806$	1-14412	2.24240
3216	$2 \cdot 2881$	$1 \cdot 14369$	2.24278
4682	$2 \cdot 2948$	$1 \cdot 14339$	2.24326
5353	$2 \cdot 2984$	$1 \cdot 14317$	2.24349
7781	$2 \cdot 3097$	$1 \cdot 14260$	2.24427
8688	$2 \cdot 3147$	$1 \cdot 14238$	2.24433
$\varepsilon_{12}=2 \cdot 2725+4.823 w_{2} ;$			
$\begin{gathered} n_{12}{ }^{2}=2 \cdot 24192+0.2745 w_{2} ;{ }_{2} P_{\infty}=182.81 \text { с.c. } \\ R_{\mathrm{D}}=50.16 \text { с.с. } ; \mu=2.55 \mathrm{D} . \end{gathered}$			
3-Chloropyridine			
1824	$2 \cdot 2800$	1-14387	$2 \cdot 24340$
3626	$2 \cdot 2871$	$1 \cdot 14331$	$2 \cdot 24344$
4785	2.2919	1-14296	$2 \cdot 24346$
7411	$2 \cdot 3022$	1-14213	2.24372
8377	$2 \cdot 3059$	1-14183	2.24378
9516	$2 \cdot 3015$	1-14145	2.24388
14,660	$2 \cdot 3308$	1-13984	$2 \cdot 24416$
$\varepsilon_{12}=2 \cdot 2726+3.988$ ¢ $_{2} ;$			
$\begin{gathered} n_{12}{ }^{2}=2 \cdot 24320+0.0685 w_{2} ;{ }_{2} P_{\infty}=113 \cdot 26 \text { с.c. } \\ R_{\mathrm{D}}=29 \cdot 12 \text { c.c. } ; \mu=2 \cdot 02 \text { D.* } \end{gathered}$			
* Lit, ${ }^{\text {2 }} 2.02 \mathrm{D}$ (for ref. see p. 4526).			

$10^{6} \psi_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
4-Bromopyridine *			
1427	$2 \cdot 2734$	$1 \cdot 14371$	2.24308
3196	$2 \cdot 2747$	$1 \cdot 14272$	$2 \cdot 24343$
3465	$2 \cdot 2750$	$1 \cdot 14250$	$2 \cdot 24349$
4361	$2 \cdot 2755$	$1 \cdot 14213$	$2 \cdot 24358$
7500	$2 \cdot 2773$	1-14040	$2 \cdot 24400$
11,220	$2 \cdot 2801$	$1 \cdot 13850$	2.24454
19,088	$2 \cdot 2849$	$1 \cdot 13436$	$2 \cdot 24565$
$\begin{aligned} & \varepsilon_{12}=2.2726+0.6507 w_{2} ; \\ & v_{12}=1.14444-0.5325 w_{2} ; \end{aligned}$			

* An allowance of 4.9 c.c. was made by Katritzky, Randall, and Sutton ${ }^{3}$ for the P_{A} of 4 -chloropyridine, being the sum of the P_{A} terms for chlorobenzene ($3.9 \mathrm{c.c}$.) and pyridine (1.5 c.c.) less the P_{A} term for benzene (0.55 c.c.). A similar allowance of 3.5 c.c. was made for the P_{A} of 4-bromopyridine, from the P_{A} of bromobenzene ($2 \cdot 5$ c.c.) (ref. $c, ~ p .4526$).
\dagger Cumper and Vogel's figure ${ }^{d}$ recalculated by taking $P_{\mathrm{A}}=3.5 \mathrm{c.c}$.

$3-$ Bromopyridine			
945	$2 \cdot 2751$	$1 \cdot 14396$	$2 \cdot 24287$
1880	$2 \cdot 2775$	$1 \cdot 14343$	$2 \cdot 24302$
3901	$2 \cdot 2833$	$1 \cdot 14240$	$2 \cdot 24311$
5571	$2 \cdot 2881$	$1 \cdot 14150$	$2 \cdot 24337$
6446	$2 \cdot 2907$	$1 \cdot 14104$	$2 \cdot 24358$
8492	$2 \cdot 2964$	$1 \cdot 13996$	$2 \cdot 24364$
11,243	$2 \cdot 3044$	$1 \cdot 13848$	$2 \cdot 24400$

$\varepsilon_{12}=2.2722+2.861 w_{2} ;$
$v_{12}=1.14445-0.5997 w_{2} ;$
$n_{12}{ }^{2}=2.24275+0.113 w_{2} ;{ }_{2} P_{\infty}=113.97$ c.c.;
$R_{\mathrm{D}}=31.86$ с.с.; $\mu=2.00$ д.*

* Lit., (d) 2.02 , (e) 1.93 D (for refs. see p .
4526).

	p-Chloronitrobenzene		
732	2.2759	$1 \cdot 14415$	$2 \cdot 24304$
$\mathbf{2 0 9 5}$	2.2822	$1 \cdot 14360$	$2 \cdot 24319$
3683	$2 \cdot 2908$	$1 \cdot 14288$	$2 \cdot 24334$
4509	$2 \cdot 2937$	$1 \cdot 14255$	$2 \cdot 24349$
5886	$2 \cdot 3009$	$1 \cdot 14198$	$2 \cdot 24367$
5897	$2 \cdot 3011$	$1 \cdot 14197$	$2 \cdot 24367$
10,459	$2 \cdot 3227$	$1 \cdot 14007$	$2 \cdot 24418$

$\varepsilon_{12}=2.2724+2.154 w_{2} ;$
$v_{12}=1 \cdot 14442-0.6249 w_{2}$;
$n_{12}{ }^{2}=2.24174+0.187 w_{2} ;{ }_{2} P_{\infty}=114.79$ с.с.;
$R_{\mathrm{D}}=38.50 \mathrm{c.c} . ; \mu=1.93 \mathrm{D}$.

m -Chloronitrobenzene			
1034	$2 \cdot 2811$	$1 \cdot 14405$	$2 \cdot 24356$
1894	$2 \cdot 2885$	$1 \cdot 14368$	$2 \cdot 24380$
3514	$2 \cdot 3009$	$1 \cdot 14299$	$2 \cdot 24397$
4621	$2 \cdot 3106$	$1 \cdot 14251$	$2 \cdot 24406$
5961	$2 \cdot 3220$	$1 \cdot 14197$	$2 \cdot 24436$
7490	$2 \cdot 3342$	1-14132	$2 \cdot 24454$
7839	$2 \cdot 3376$	1-14118	2.24463
$\varepsilon_{12}=2 \cdot 2725+8 \cdot 265 w_{2} ;$			
${ }^{12} R_{\mathrm{D}}=37.74$ с.с.; $\mu=3.44 \mathrm{D}$.*			
* Lit., ${ }^{\text {a }}$ 3 38, 3•18, 3•12, 3.40 D.			

$10^{6} w_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
m -Bromonitrobenzene			
2048	$2 \cdot 2855$	1-14332	$2 \cdot 24305$
3104	$2 \cdot 2924$	$1 \cdot 14270$	$2 \cdot 24326$
4345	$2 \cdot 3005$	$1 \cdot 14200$	$2 \cdot 24348$
5861	$2 \cdot 3108$	$1 \cdot 14112$	$2 \cdot 24364$
7445	$2 \cdot 3207$	1-14026	$2 \cdot 24393$
7552	$2 \cdot 3216$	$1 \cdot 14009$	$2 \cdot 24393$
94.22	$2 \cdot 3332$	1-13906	2.24421
$\varepsilon_{12}=2.2722+6.519 w_{2} ;$			
$v_{12}=1.14448-0.5735 w_{2}$;			
$R_{\mathrm{D}}=40.12 \text { с.с. } ; \mu=3.44 \mathrm{D} . *$			
\dagger Lit., ${ }^{\text {b }} 3 \cdot 17,3.41$ (for ref. see p. below).			

m-Iodonitrobenzene

650	$2 \cdot 2759$	$1 \cdot 14401$	$2 \cdot 24337$
2202	$2 \cdot 2846$	$1 \cdot 14301$	2.24364
3199	$2 \cdot 2900$	$1 \cdot 14235$	$2 \cdot 24385$
3963	$2 \cdot 2945$	$1 \cdot 14185$	$2 \cdot 24400$
9462	$2 \cdot 3254$	$1 \cdot 13824$	$2 \cdot 24493$
10,635	$2 \cdot 3320$	$1 \cdot 13743$	$\mathbf{2 . 2 4 5 1 1}$
11,314	$\mathbf{2 . 3 3 5 8}$	$\mathbf{1} \cdot 13706$	$\mathbf{2 . 2 4 5} 94$

$$
\begin{gathered}
\varepsilon_{12}=2.2722+5.619 w_{2} ; \\
v_{12}=1.14445-0.6579 w_{2} ;
\end{gathered}
$$

$$
n_{12}{ }^{2}=2 \cdot 24328+0 \cdot 173 w_{2} ;{ }_{2} P_{\infty}=299.27 \text { c.c. }
$$

$$
R_{\mathrm{D}}=43.73 \text { с.с. } ; \mu \stackrel{2}{=}=3.54 \mathrm{D} . *
$$

* Lit., ${ }^{\boldsymbol{b}} 3 \cdot 22,3 \cdot 62$ D (for ref. see below).

Refs.: (a) Cumper, Vogel, and Walker, J., 1956, 3621. (b) Wesson, " Tables of Electric Dipole Moments," Technology Press, Cambridge, Mass. (c) Huang and Sullivan, Nature, 1960, 188, 1104. (d) Cumper and Vogel, J., 1960, 4723. (e) Goethals, Rec. Trav. chim., 1935, 54, 299.
$147 \cdot 5^{\circ} / 754 \mathrm{~mm}$. ($148^{\circ} / 744 \mathrm{~mm} .{ }^{14}$); 3-bromopyridine, ${ }^{15}$ b. p. $171^{\circ} / 751 \mathrm{~mm}$. ($169 — 170^{\circ}{ }^{14}, 173^{\circ}{ }^{14}$, $173 \cdot 7-174^{\circ} / 762 \mathrm{~mm} .{ }^{15}$); 3-iodopyridine, ${ }^{16} \mathrm{~m}$. p. $53-54^{\circ}\left(52^{\circ}{ }^{16}, 53 \cdot 5^{\circ}{ }^{14}\right)$; 3-isopropylpyridine, ${ }^{17}$ b. p. $179^{\circ} / 750 \mathrm{~mm} .\left(179 \cdot 3^{\circ}{ }^{17}\right)$ [picrate, m. p. $138.5^{\circ}\left(138 \cdot 1-138 \cdot 6^{\circ}{ }^{17}\right)$].

The halogenonitrobenzenes were commercial samples or prepared by diazotisation. All were steam-distilled and fractionally crystallised from light petroleum: m-chloro-, m. p. $45 \cdot 5^{\circ}\left(46^{\circ}{ }^{14}\right)$, m-bromo-, m. p. $56.5^{\circ}\left(56^{\circ}{ }^{14}\right)$, m-iodo-, m. p. $38^{\circ}\left(38.5^{\circ}{ }^{14}\right)$, p-chloro-, m. p. 83° ($83^{\circ}{ }^{14}$), p-bromo-, m. p. $127^{\circ}\left(127^{\circ}{ }^{14}\right)$, and p-iodo-nitrobenzene, m. p. $174 \cdot 5^{\circ}\left(174^{\circ}{ }^{14}\right)$.

Solid samples were stored under a high vacuum in the presence of phosphoric oxide and wax shavings in the dark for at least 2 days before use. For deliquescent compounds the desiccator was refilled with dry nitrogen. Liquids were used immediately after distillation, or, where this was impossible, were stored in the dark in small Quickfit stoppered flasks with a minimum of air space.

Discussion

The two results for pyridine 1-oxide, which are for different samples, one crystallised from benzene and weighed out in an atmosphere of nitrogen, and the other crystallised from ether and weighed out in an atmosphere of carefully dried air, are identical within the limits of experimental error, but differ significantly from the value obtained by Linton, ${ }^{2}$ who stated that drying trains were used but did not stress the importance of exclusion of moisture. The difference ($0 \cdot 23 \mathrm{D}$) between the value for 4 -methylpyridine 1 -oxide and that obtained by Katritzky, Randall, and Sutton ${ }^{3}$ is probably due to the effect of water; no mention of special precautions was made in their paper; the value obtained for 4 -chloropyridine l-oxide, which is not particularly hygroscopic, is identical within the limits of

[^2]experimental error with the value obtained by these workers. The water probably exerts its effect by forming a highly polar hydroxide. No changes were observed under differing conditions with the substituted pyridines and nitrobenzenes.

Table 2.
Comparison of moments calculated with and without inclusion of the inductive effect.

The bond lengths and angles in pyridine (and presumably pyridine 1-oxide) differ from those in benzene. ${ }^{18}$ This difference is certain to mean differing electronegativities of the ring-carbon atoms in the two systems, and this in turn will affect both the $\mathrm{C}-\mathrm{X}$ moment and the unsubstituted $\mathrm{C}-\mathrm{H}$ moments. It would, thus, be unwise to expect the calculated moment, even for a substituent with a low mesomeric and induced moment, to be identical with the observed moment.

In Table 2 values obtained by summation of the moments of the parent compounds and the corresponding substituted benzenes ($\mu_{\text {calc. }}$.) are compared with values obtained by allowing for the classical inductive effect ($\mu_{\text {corr. }}$) in a way similar to that used by Smith and Littlejohn for monosubstituted biphenyls. ${ }^{19}$

The dipole moment induced in a substituent by a dipole μ may be estimated from the equations: ${ }^{20}$

$$
\begin{aligned}
& \mu_{x}=\frac{\mu \gamma\left(\varepsilon_{b}+2\right)}{3 \varepsilon_{a} r^{3}}\left(3 \cos ^{2} \theta-1\right) \\
& \mu_{y}=\frac{\mu \gamma\left(\varepsilon_{b}+2\right)}{\varepsilon_{a} r^{3}} \cdot \sin \theta \cos \theta
\end{aligned}
$$

where μ_{x} and μ_{y} are the moments induced along the x and the y axis, respectively, in the plane containing the polarisable centre and the polarising dipole, the line from the polarisable centre to the dipole being inclined at an angle θ to the axis of the dipole: ε_{a} is the dielectric constant of the material between the dipole and the polarisable centre, and ε_{b} the dielectric constant of the polarisable material. Both ε_{a} and ε_{b} were taken as $2 \cdot 3$, the dielectric constant of benzene, and the polarisabilities γ were calculated from the appropriate bond refractions. ${ }^{21}$ In the case of pyridine, the polarising dipole was

[^3]assumed to be situated in the region of the nitrogen atom and to be about $1.8 \mathrm{D} .{ }^{22}$ Three sets of values, corresponding to a polarising dipole located up to $0.2 \AA$ from the nitrogen atom did not differ by more than 0.01 D .

Except for alkyl compounds, the moments calculated with inclusion of the inductive effect are generally closer to the observed values than those without, although the agreement is still not good. The calculated moments of the alkyl compounds are, in general, larger than the observed moments, the remainder generally smaller.

Chemical and previous dipole-moment evidence indicates that the mesomeric effect of substituents attached to the pyridine ring is higher for electron-releasing and lower for electron-withdrawing substituents than in the benzene series, and that it is greater for both types of substituent in the 4 -position of pyridine l-oxide than in the pyridine or benzene series. This conclusion is supported by infrared work. ${ }^{23}$ The results in the present work, which are only for electron-releasing substituents, or substituents whose mesomeric moment is directed towards the ring, agree with such conclusions. In addition, the interaction moments in Table 3, which reflect changes in induced and mesomeric moments relative to the corresponding groups in benzene, indicate that the electronaccepting power of the nitrobenzene ring lies between those of pyridine and pyridine 1-oxide.

Estimates have been made of the $\mathrm{C}-\mathrm{H}$ bond moment in pyridine and benzene ${ }^{24}$ but cannot yet be made for pyridine l-oxide, and the $\mu_{\text {int. }}$. values are dependent on the $\mathrm{C}-\mathrm{H}$ bond moment differences in these systems. This is borne out by the relative order of the

Table 3.
Interaction moments ${ }^{a}$ (D) $\left(\mu_{\text {int. }}=\mu_{\text {obs. }}-\mu_{\text {calc. }}\right)$.

Benzene
0
0
0
0
0
0
0
0
0
Pyridine
$+0.22^{b}$
$+0.17^{b}$
$+0.15^{b}$
$+0.12^{c}$
$+0.02^{d}$
$+0.07^{d}$
$+0.34^{a}$
$+0.14^{b}$
$+0.95^{b}$
Nitrobenzene
-
$+0.19^{c}$
$+0.21^{c}$
$+0.04 a^{a}$
$+0.15^{f}$
$+0.35^{a}$
$+0.32^{a}$

$+1.48^{a}$
Pyridine 1 -oxide
$+0.51^{b, e}$
$+0.22^{c}$
$+0.27^{c}$
-0.06^{c}
$+0.01^{c}$
$+0.42^{c}$
$+0.40^{b}$

$+1.52^{b}$
${ }^{a}$ Bond angles and moments used in obtaining $\mu_{\text {int. }}$ were taken from Smith (ref. 20, p. 209). b, d, f Observed values from refs. 3, 24, and 23, respectively. ${ }^{c}$ This investigation. ${ }^{e} \mu_{\text {obs. }}$ taken as $0.69 \mathrm{D}^{3}{ }^{3}$ this is probably too high through neglect of P_{A}, and the workers suggest that the actual moment is indistinguishable from zero.
interaction moments for the alkyl substituents, which for these dipoles of small magnitude suggests that the values are governed by $\mathrm{C}-\mathrm{H}$ bond-moment variations. The values of $\mu_{\mathrm{OX}}-\mu_{\mathrm{CH}}$ (see Table 4) indicate a similar order of electron-accepting power. When the calculated induced moments are allowed for, the order is unchanged.

Since Hammett substituent constants are a measure of the interaction between a substituent and the ring, linear relations are frequently found between the σ values and sets of physical data. ${ }^{25,26}$ A linear relation between dipole moments and σ value for para- and apparently also meta-substituted nitrobenzenes, chlorobenzenes, and anilines has been reported. ${ }^{26}$ A linear plot is obtained for dipole moment of 4 -substituted pyridines and pyridine 1 -oxides against σ-value; this is not the case for 3 -substituents,

[^4]Table 4.
Calculated differences in moments (D), $\mathrm{C}-\mathrm{X}$ minus $\mathrm{C}-\mathrm{H}$.

${ }^{a}$ Calc. by assuming μ (pyridine) $=2.21 \mathrm{D} .{ }^{24} \quad b$ Calculated for 4 -substituted compounds by assuming $\mu\left(\mathrm{NO}_{2}\right)=4.01 \mathrm{D} .{ }^{20} \quad \bullet$ Using 4.01 D for $\mu\left(\mathrm{NO}_{2}\right)$ gives complex values for halogen substituents. Values shown were arrived at by assuming $\mu(\mathrm{CMe})=0.37 \mathrm{D}$ (Cumper, Vogel, and Walker, J., 1957, 3640) in 3-nitrotoluene ($\mu=4.14$ or $4 \cdot 17 \mathrm{D}$) (ref. b, p. 4526), giving $\mu\left(\mathrm{NO}_{2}\right)=3.94$ and 3.96 D , respectively. This illustrates the large possible error for 3 -substituted compounds. ${ }^{d}$ Calc. by assuming μ (pyridine oxide) $=4.19$ D.
where the actual dipole moment acts at an angle to the direction of the electronic displacements, depending on the relative magnitudes of the substituent moments, and may not

Fig. 1, Pyridines.

Fig. 2, Nitrobenzenes.

Figs. 1-3. Differences in calculated moments, $\mathrm{C}-\mathrm{X}$ minus $\mathrm{C}-\mathrm{H}$, plotted against σ-values.
$1,4-\mathrm{NMe}_{2} .2,3$ - and 4-Alkyl. 3, 4-Ph. 4, 4-Hal. 5,3-Hal. 6, 4- NO_{2}.

Fig. 3, Pyridine 1-oxides.
reflect in a simple manner the degree of interaction between the groups. If $\mathrm{C}-\mathrm{X}$ minus $\mathrm{C}-\mathrm{H}$ moments of both 3 - and 4 -substituents are plotted against σ values ${ }^{27}$ (see Figs. 1, 2, and 3) a good approach to linearity is obtained.

Plots of extinction coefficient and stretching frequency ${ }^{28}$ against σ value for the $\mathrm{N}-\mathrm{O}$ group in substituted pyridine 1 -oxides show good linearity, and deviations by the methyl-amino-, dimethylamino-, cyano-, and nitro-groups indicate electron drift towards the ring relative to that in benzene.

The integrated absorption intensity of the $\mathrm{N}-\mathrm{O}$ in-plane bending vibration should

[^5]be a function of the dipole moment of the group and hence of the mesomeric moment of this group with the remainder of the molecule. Katritzky ${ }^{23}$ suggests that the bands occurring at about $850 \mathrm{~cm} .^{-1}$ may be due to this vibrational mode. A plot of the maximum extinction coefficients of these bands against mesomeric moment (as calculated by Katritzky, Randall, and Sutton ${ }^{3}$) is shown in Fig. 4. It is surprising that, as the electronreleasing power of the substituent group is diminished, the extinction coefficient is increased.

On numerous occasions dipole moments have been used to indicate the importance of hyperconjugation in molecules. ${ }^{29}$ One current view is that hyperconjugation is unimportant, ${ }^{30}$ except perhaps in electronically excited or ionic species. Electron affinity increases significantly in the series, benzene $<$ pyridine $<$ nitrobenzene $<$ pyridine l-oxide, and important contributions from hyperconjugation in the alkyl derivatives might show up in marked differences in the moments of the methyl and the t-butyl group

Fig. 4. Plot of mesomeric moment against extinction coefficient for the $850 \mathrm{~cm} .^{-1}$ bands of pyridine l-oxides. The points in order of decreasing $\mu_{\text {meso }}$ values for the four substituents are $\mathrm{NMe}_{2}, \mathrm{OMe}, \mathrm{Me}$, COMe , and NO_{2}.
under the different electronic conditions. Further, if the capacity for hyperconjugation is greater for the methyl than for the t-butyl group, then the difference between the methyl and the t-butyl group moments should be smaller in pyridine l-oxide than in benzene. The dipole moments are considered to be reliable since a homologous series was measured in each case. The differences (corrected for electrostatic induction) are: benzene 0.08 , pyridine 1 -oxide 0.05 , pyridine 0.08 D . The similarity of these differences suggests that hyperconjugation is not important in determining the overall dipole moment of a molecule. An alternative but less likely explanation would be that hyperconjugation is of comparable importance for both the methyl and the t-butyl group.

One of us (A. N. S.) thanks the Department of Scientific and Industrial Research for a maintenance grant. We are also indebted to Dr. A. J. Nunn of this College for the synthesis of some of the substituted pyridine 1 -oxides and a considerable amount of advice on their preparation, and to Mr. Palmer and Mr. Travers for preliminary dipole-moment work on these compounds. We also thank Mr. L. P. Priestley, the Head of the Department, for his interest, Mr. A. Clarke for technical assistance, and the University of London Central Research Fund for the loan of a standard variable air condenser.

School of Chemistry, College of Technology, Leicester.
[Received, February 10th, 1961.]

[^6]
[^0]: ${ }^{1}$ Ochiai, summarizing paper, J. Org. Cheri., 1953, 18, 534.
 ${ }^{2}$ Linton, J. Amer. Chem. Soc., 1940, 62, 1945.
 3 Katritzky, Randall, and Sutton, $J ., 1957,1769$.
 ${ }^{4}$ Eichorn, Acta Crvest., 1956, 9, 78%.
 s Sharpe and Walker, J., 1961, 2974.

[^1]: ${ }^{6}$ Rodd, " Chemistry of Carbon Compounds," Elsevier, Amsterdam, 1957, Vol. IVa.

 * Boeckelheide and Linn, J. Amer. Chem. Soc., 1954, '76, 1286.
 ${ }^{s}$ Ochiai, J. Pharm. Soc. Japan, 1944, 64, 72.
 ${ }^{9}$ den Hertog and Coombé, Rec. Trav. chim., 1951, 70, 581.
 ${ }^{10}$ Katritzky, J., 1956, 2404.
 ${ }^{11}$ Murray and Hauser, J. Ovg. Chem., 1954, 19, 2008.
 ${ }^{12}$ Murray and Langham, J. Amer. Chem. Soc., 1952, 74, 6289.
 ${ }^{13}$ Katritzky and Hands, J., 1958, 1754.

[^2]: ${ }^{14}$ Heilbron, " Dictionary of Organic Compounds," Eyre and Spottiswoode, Iondon, 1936.
 15 den Hertog and Wibaut, Rec. Trav. chim., 1932, 51, 949.
 ${ }^{16}$ Gergely and Iredale, $J ., 1953,3232$.
 17 Brown and Murphey, \vec{J}. Amer. Chem. Soc., 1951, 78, 3308.

[^3]: 18 Bak, Hansen, and Rastrup-Anderson, J. Chem. Phys., 1954, 22, 2013.
 ${ }^{19}$ Smith and Littlejohn, J., 1953, 2456; 1954, 2552.
 ${ }^{20}$ Smith, " Electric Dipole Moments," Butterworths, London, 1955.
 ${ }^{21}$ Smallwood and Herzfeld, J. Amer. Chem. Soc., 1930, 52, 1919.

[^4]: ${ }^{22}$ Cumper, Chem. and Ind., 1958, 1628.
 ${ }^{23}$ Katritzky, Quart. Rev., 1959, 13, 353.
 ${ }^{24}$ Cumper, Vogel, and Walker, J., 1956, 3621.
 ${ }^{25}$ Rao, Chem. and Ind., 1956, 666; Whetsel, Roberson, and Krell, Analyt. Chem., 1958, 30, 1598: Rao, Wahl, and Williams, Canad. J. Chem., 1957, 35, 1575.
 ${ }_{26}$ van Beek, Rec. Trav. chim., 1957, 78, 729.

[^5]: ${ }^{27}$ Jaffé, Chem. Rev., 1953, 53, 191.
 ${ }^{28}$ Katritzky and Gardner, J., 1958, 2192.

[^6]: ${ }^{29}$ See under " Hyperconjugation" in ref. 20.
 ${ }^{30}$ Dewar and Schmeising, Tetrahedron, 1959, 5, 166; Brown, J. Amer. Chem. Soc., 1959, 81, 3232.

